search
人工神經網路讓你一秒變老變年輕,而且不會走樣

人工神經網路讓你一秒變老變年輕,而且不會走樣

深度學習機器能夠呈現人臉衰老后的模樣,但卻往往越變越不像本人。現在計算機科學家已經解決了這個問題。

我們將會如何變老?這個問題令人著迷。事實上很多人都對自己在20年、30年、甚至40年後會變成什麼樣充滿了好奇。

目前已經有不少技術可以模擬我們的年齡變化,但大多非常耗時且昂貴。若有一種方法可以便宜又快速地在照片中老化人臉,那可就方便多了。

在這裡向大家介紹來自法國Orange Labs的Grigory Antipov和他的小夥伴們,他們開發的深度學習機器可以輕鬆做到這一點。他們的系統不僅能夠模擬年輕的臉衰老后的模樣,還可以使衰老的臉變得年輕起來。

近年的一些技術發展推動了他們的產品開發。這幾年,計算機科學家設計了能夠以各種形式修改臉部圖像又不失真的深度學習機器。這個方法能夠創造出更加逼真的衰老人像。

然而問題是,臉部圖像在深度學習機器修改過程中逐漸身份模糊,變得越來越不像本人。導致最後人是變老了,但也認不出來了。

Antipov和他的公司找到了一種解決方案。他們採用了兩台深度學習機器協同工作——臉部圖像生成器和人臉鑒別器。在學習人臉隨年齡的變化時,兩台機器會分析大量不同年齡層的人的照片:0~18,19~29,30~39,40~49,50~59,及60歲以上。

訓練深度學習機器的過程涵蓋了每個年齡層的5000張臉,照片來自互聯網電影資料庫(IMDb)以及維基百科(Wikipedia),每張照片都被標註了人的年齡。這樣一來機器就了解了每個年齡層的臉部特徵,並能夠將特定年齡層的特徵運用到其他人臉上使它們也看起來像同一年齡層的臉。

為了防止身份模糊,第二台深度學習機器——人臉鑒別器,會檢測合成后的老化人臉是否還能認得出來,如果不能,圖像就無法通過。

Antipov和他的公司把這個流程叫作「條件性年齡模擬對抗網路」,「對抗」一詞是緣於兩台深度學習機器反向運作,一個致力於改變(老化),一個致力於還原(鑒別)。

最後的效果令人印象深刻。開發團隊將該技術用在來自IMDb和Wikipedia的1萬張人臉上,這1萬張都是機器此前沒見過的。然後他們用OpenFace來測試處理前和處理后的照片上是不是同一個人。與其他只有50%正確率的人臉修正技術相比,這種新技術擁有80%的正確率。

當然這種技術不僅可以用來老化人臉,還能年輕化。

有一個很明顯的對比測試還沒做:對比電腦合成的年輕化人臉圖像以及真人在年輕時期的臉部照片。這能夠很好地測量該技術的準確性,也許未來可以試試。

Antipov表示,他們的技術可以應用於辨認失蹤多年的人。此外如果他們把演算法公開的話,那麼隨便玩玩也很有趣。

熱門推薦

本文由 一點資訊 提供 原文連結

一點資訊
寫了5860316篇文章,獲得23262次喜歡
留言回覆
回覆
精彩推薦